

Optimizing Gas Processing in the Permian Basin Choosing between TEG with molecular sieve (MS) polishing or fully saturated MS dehydration

Tim Oneal, MChE Kelly Hert, P.E. Sergey Tatarinov, MSc Grant McCool, P.E., MBA

Problem Statement

- Compare cost and operational concerns for dehydration upstream of a cryogenic plant
- TEG + <u>Unsat</u>urated versus <u>Sat</u>urated Sieve
 - 250 MMscfd and 350 MMscfd
- Assumptions:
 - 1,100 psi MAWP, 0.0625" CA CS

Feed			
Temperature [F]	120		
Pressure [psig]	848		
Flow [MMscfd]	250 & 350		
	Mole Frac		
Nitrogen	0.039		
Methane	0.705		
Ethane	0.120		
Propane	0.084		
i-Butane	0.007		
n-Butane	0.026		
Pentane+	0.015		
Water Content	112 (Saturated)		
[<u>lb</u> /MMscfd]			

TEG Design and Sizing

	250 MMscfd	350 MMscfd
Outlet Content [lb/MMscfd]	6.32	6.33
TEG GPM	54	75
TEG Purity, weight%	99.08%	
TEG Contactor	7' ID X 30'S/S	8' ID X 30'S/S

- 3-gallon TEG / # H₂O assumed for circulation rate, with 7 lb / MMscfd targeted
- If BTEX is present, outlet content will slip to 8.27 lb / MMscfd with the purity reduced to 98.74%
- If sparged stripping gas (2 SCF / Gal TEG) is added, purities 99.05% to 99.34%
 - Water content outlet 4.77 #/MMscfd to 6.46 #/MMscfd

Sieve Design and Sizing

	250 MMscfd / 350 MMscfd	
	Unsat	Sat
Water Content of Fresh Feed [lb/MMscfd]	15	112
Adsorption Time per cycle [hour]	18	12
Regen Gas Rate per bed [MMscfd]	13 / 17.5	28.8 / 42
Sieve Vessel ID (3 required) [feet]	8.5 /10	9 /10.5
Actual S/S Height [feet]	16	30 /32
Regen Gas Heater Duty [MMBtu/hour]	4.99 / 7.19	21.78 / 31.27

*Enerflex developed a hybridized tool using the GPSA 14th Edition Method utilizing 4A sieve, assuming 14.5% lb water / lb sieve with performance degradation

- Short adsorption times = minimum Sat CAPEX and OPEX "Best Engineering Judgement"
- Unsat: minimum required regen flows due to minimum pressure drop requirements

Equipment CAPEX and Vessels

	250 MMscfd / 350 MMscfd		
	TEG + Unsat Sieve	Sat Sieve	
Cycle Times [hour]	18	12	
Sieve Adsorbers [QTY 3]	8.5' / 10'ID X 16'S/S	9' / 10.5'ID X 30'S/S X 32'S/S	
TEG Contactor	7' / 8'ID X 30'S/S	NA	
Weight Vessels [1,000 lbs]	360 / 497	484 / 736	

- Weight Matters: TEG + unsat is ~1 million US\$ cheaper
 - Excludes total installed cost (TIC) and fill volumes
- Cycle Times: 12 versus 18 hours on sat design
 - 18 Hours : Unsat +5% (minimal impact), Sat +35% (mid to big impact)
- Water Matters
 - Hot day (125°F)
 - +20% glycol circulation (minimal cost impact), +10% to total sieve design (big impact)

Initial Fills, Emissions, and OPEX

- Assumptions:
 - Yearly glycol replacement (\$12/gallon), 3-year sieve changeout (\$2.75/lb), 7¢/kWh, \$2.75/MMBtu fuel

- Fills: Sat is \$0.3 million US\$ more expensive (initial)
 - \$2.1 million to \$3.5 million US\$ over 20 years (note replacement times TEG vs. Sieve differ)
 - Unsat beds could last longer due to 12-hour versus 18-hour cycle time
 - If 3-year glycol and 5-year sieve changeout, reduced to \$1.3 million to \$2 million US\$

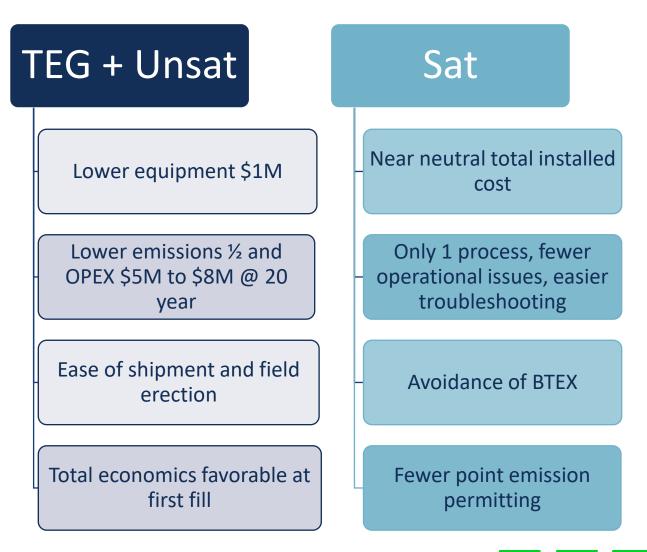
Emissions:	250 MMscfd / 350 MMscfd	
	TEG + Unsat	Sat
Corrected Total Duty [MMBtu/hour]	6.20 / 8.86	13.07 /18.76
Yearly emissions [CO2+CO tons/year]	4,470 / 6,380	9,421 / 13,527
	Note Point emissions are higher for a TEG + Unsat	

- OPEX: \$0.15 million to \$0.25 million US\$ / Year
 - \$3 million to \$5 million US\$ over 20 years

Total Installed Cost, Plot, and Shipping

- Total Installed = ~Neutral costs
 - Assumption: 2x Equipment = TIC cost assumption with inefficiency
 - 2 plants in series is inefficient and more costly
 - Eroding the Equipment CAPEX cost advantage
- Operating cost favors TEG, if upsets kept in check
- Plot +30% with TEG system, but small
 - If amine present, somewhat inconsequential
- Crawlers, large cranes, and robust shipping prevalent with Sat
 - Shipping \$/ sieve vessel +60% at 250 MMscfd
 - 3x higher for 350 MMscfd

Operational Considerations


- Unsat: Ramp up easier in Unsat
 - High regen rate + Low adsorber volume (excess standby)
 - This minimizes refluxing concerns
- Foaming events, specifically glycol, are detrimental to sieve (Block & Bake), but amine may only be hindering
 - Glycol = lower volume event? & easier for coalescing to handle
- BTEX is not an issue for Sat, but may show up in amine
 Poses environmental, engineering, operations, and emissions issues
- Smaller Unsat beds may changeout more quickly

Final Conclusions

- Company preference will always prevail, however:
- 350 MMscfd versus 250 MMscfd:
 - Cost advantages, both CAPEX and OPEX are widened with larger plant size
 - Big Plants justify Unsat
 - If permitting and operations can handle both systems

Questions?

